Unravelling in-situ formation of highly active mixed metal oxide CuInO2 nanoparticles during CO2 electroreduction

Authors: Roghayeh Imani, Zhen Qiu, Reza Younesi, Meysam Pazoki, Daniel L.A. Fernandes, Pavlin D. Mitev, Tomas Edvinsson, Haining Tian

Technologies and catalysts for converting carbon dioxide (CO2) to immobile products are of high interest to minimize greenhouse effects. Copper(I) is a promising catalytic active state of copper but hampered by the inherent instability in comparison to copper(II) or copper(0). Here, we report a stabilization of the catalytic active state of copper(I) by the formation of a mixed metal oxide CuInO2 nanoparticle during the CO2electroreduction. Our result shows the incorporation of nanoporous Sn:In2O3 interlayer to Cu2O pre-catalyst system lead to the formation of CuInO2 nanoparticles with remarkably higher activity for CO2 electroreduction at lower overpotential in comparison to the conventional Cu nanoparticles derived from sole Cu2O. Operando Raman spectroelectrochemistry is employed to in-situ monitor the process of nanoparticles formation during the electrocatalytic process. The experimental data are collaborated with DFT calculations to provide insight into the electro-formation of the type of Cu-based mixed metal oxide catalyst during the CO2 electroreduction, where a formation mechanism via copper ion diffusion across the substrate is suggested.

Nano Energy, Volume 49, July 2018, Pages 40-50

Maximally resolved anharmonic OH vibrational spectrum of the water/ZnO(10-10) interface from a high-dimensional neural network potential

Authors:  Vanessa Quaranta, Matti Hellström, Jörg Behler, Jolla Kullgren, Pavlin D. Mitev, and Kersti Hermansson

Unraveling the atomistic details of solid/liquid interfaces, e.g., by means of vibrational spectroscopy, is of vital importance in numerous applications, from electrochemistry to heterogeneous catalysis. Water-oxide interfaces represent a formidable challenge because a large variety of molecular and dissociated water species are present at the surface. Here, we present a comprehensive theoretical analysis of the anharmonic OH stretching vibrations at the water/ZnO(10-10) interface as a prototypical case. Molecular dynamics simulations employing a reactive high-dimensional neural network potential based on density functional theory calculations have been used to sample the interfacial structures. In the second step, one-dimensional potential energy curves have been generated for a large number of configurations to solve the nuclear Schrödinger equation. We find that (i) the ZnO surface gives rise to OH frequency shifts up to a distance of about 4 Å from the surface; (ii) the spectrum contains a number of overlapping signals arising from different chemical species, with the frequencies decreasing in the order ν(adsorbed hydroxide) > ν(non-adsorbed water) > ν(surface hydroxide) > ν(adsorbed water); (iii) stretching frequencies are strongly influenced by the hydrogen bond pattern of these interfacial species. Finally, we have been able to identify substantial correlations between the stretching frequencies and hydrogen bond lengths for all species.

The Journal of Chemical Physics, 148, 241720 (2018);

Hydrogen-Bond Relations for Surface OH Species

Authors: Getachew G. Kebede , Pavlin D. Mitev, Peter Broqvist, Jolla Kullgren , and Kersti Hermansson

This paper concerns thin water films and their hydrogen-bond patterns on ionic surfaces. As far as we are aware, this is the first time H-bond correlations for surface water and hydroxide species are presented in the literature while hydrogen-bond relations in the solid state have been scrutinized for at least five decades. Our data set, which was derived using density functional theory, consists of 116 unique surface OH groups–intact water molecules as well as hydroxides–on MgO(001), CaO(001) and NaCl(001), covering the whole range from strong to weak to no H-bonds. The intact surface water molecules are found to always be redshifted with respect to the gas-phase water OH vibrational frequency, whereas the surface hydroxide groups are either redshifted (OsH) or blueshifted (OHf) compared to the gas-phase OH frequency. The surface H-bond relations are compared with the traditional relations for bulk crystals. We find that the “ν(OH) vs R(H···O)” correlation curve for surface water does not coincide with the solid state curve: it is redshifted by about 200 cm–1 or more. The intact water molecules and hydroxide groups on the ionic surfaces essentially follow the same H-bond correlation curve.

J. Phys. Chem. C2018122 (9), pp 4849–4858
DOI: 10.1021/acs.jpcc.7b10981

Vacancy dipole interactions and the correlation with monovalent cation dependent ion movement in lead halide perovskite solar cell materials

Authors: M.Pazoki, M. J. Wolf, T. Edvinsson and J.Kullgren

Ion migration has recently been suggested to play critical roles in the operation of lead halide perovskite solar cells. However, so far there has been no systematic investigation of how the monovalent cation affects the vacancy formation, ion migration and the associated hysteresis effect. Here, we present density functional theory calculations on all possible ion migration barriers in the perovskite materials with different cations i.e. CH3NH3PbI3, CH(NH2)2PbI3 and CsPbI3 in the tetragonal phase and investigate vacancy monovalent-cation interactions within the framework of the possible ion migrations. The most relevant ion movement (iodide) is investigated in greater detail and corresponding local structural changes, the relationships with the local ionic dielectric response, Stark effect and current-voltage hysteresis are discussed. We observe a correlation between the energy barrier for iodine migration and the magnitude of the dipole of the monovalent cation. From the data, we suggest a vacancy-dipole interaction mechanism by which the larger dipole of the monovalent cation can respond to and screen the local electric fields more effectively. The stronger response of the high dipolar monovalent cation to the vacancy electrostatic potential in turn leads to a lower local structural changes within the neighbouring octahedra. The presented data reveal a detailed picture of the ion movement, vacancy dipole interactions and the consequent local structural changes, which contain fundamental information about the photo-physics, and dielectric response of the material.

Nano Energy, 38, 2017, pp. 537-543
DOI: 10.1016/j.nanoen.2017.06.024

DFT-based Monte Carlo Simulations of Impurity Clustering at CeO2(111)

Authors: Jolla Kullgren, Matthew J. Wolf, Pavlin D. Mitev, Kersti Hermansson and Wim J. Briels

The interplay between energetics and entropy in determining defect distributions at ceria(111) is studied using a combination of DFT+U and lattice Monte Carlo simulations. Our main example is fluorine impurities, although we also present preliminary results for surface hydroxyl groups. A simple classical force-field model was constructed from a training set of DFT+U data for all symmetrically inequivalent (F)n(Ce3+)n nearest-neighbor clusters with n = 2 or 3. Our fitted model reproduces the DFT energies well. We find that for an impurity concentration of 15% at 600 K, straight and hooked linear fluorine clusters are surprisingly abundant, with similarities to experimental STM images from the literature. We also find that with increasing temperature the fluorine cluster sizes show a transition from being governed by an attractive potential to being governed by a repulsive potential as a consequence of the increasing importance of the entropy of the Ce3+ ions. The distributions of surface hydroxyl groups are noticeably different.

J. Phys. Chem. C, 2017, 121 (28), pp 15127–15134
DOI: 10.1021/acs.jpcc.7b00299

Electronic structure of organic–inorganic lanthanide iodide perovskite solar cell materials

Authors: M. Pazoki, A. Röckert, M. J. Wolf, R. Imani, T. Edvinsson, and J. Kullgren.

The emergence of highly efficient lead halide perovskite solar cell materials makes the exploration and engineering of new lead free compounds very interesting both from a fundamental perspective as well as for potential use as new materials in solar cell devices. Herein we present the electronic structure of several lanthanide (La) based materials in the metalorganic halide perovskite family not explored before. Our estimated bandgaps for the lanthanide (Eu, Dy, Tm, Yb) perovskite compounds are in the range of 2.0–3.2 eV showing the possibility for implementation as photo-absorbers in tandem solar cell configurations or charge separating materials. We have estimated the typical effective masses of the electrons and holes for MALaI3 (La= Eu, Dy, Tm, Yb) to be in the range of 0.3–0.5 and 0.97–4.0 units of the free electron mass, respectively. We have shown that the localized f-electrons within our DFT+U approach, make the dominant electronic contribution to the states at the top of the valence band and thus have a strong impact on the photo-physical properties of the lanthanide perovskites. Therefore, the main valence to conduction band electronic transition for MAEuI3 is based on inner shell f-electron localized states within a periodic framework of perovskite crystal by which the optical absorption onset would be rather inert with respect to quantum confinement effects. The very similar crystal structure and lattice constant of the lanthanide perovskites to the widely studied CH3NH3PbI3 perovskite, are prominent advantages for implementation of these compounds in tandem or charge selective contacts in PV applications together with lead iodide perovskite devices.

J. Mater. Chem. A, 5, 2017, pp. 23131-23138
DOI: 10.1039/C7TA07716E

Photon Energy-Dependent Hysteresis Effects in Lead Halide Perovskite Materials

Authors: Meysam Pazoki, T. Jacobsson, Silver H. Jesper and Cruz, Malin Johansson, Roghayeh Imani, Jolla Kullgren, Anders Hagfeldt, Erik M. J. Johansson, Tomas Edvinsson and Gerrit Boschloo.

Lead halide perovskites have a range of spectacular properties and interesting phenomena and are a serious candidate for the next generation of photovoltaics with high efficiencies and low fabrication costs. An interesting phenomenon is the anomalous hysteresis often seen in current–voltage scans, which complicates accurate performance measurements but has also been explored to obtain a more comprehensive understanding of the device physics. Herein, we demonstrate a wavelength and illumination intensity dependency of the hysteresis in state-of-the-art perovskite solar cells with 18\% power conversion efficiency (PCE), which gives new insights into ion migration. The perovskite devices show lower hysteresis under illumination with near band edge (red) wavelengths compared to more energetic (blue) excitation. This can be rationalized with thermalization-assisted ion movement or thermalization-assisted vacancy generation. These explanations are supported by the dependency of the photovoltage decay with illumination time and excitation wavelength, as well as by impedance spectroscopy. The suggested mechanism is that high-energy photons create hot charge carriers that either through thermalization can create additional vacancies or by release of more energetic phonons play a role in overcoming the activation energy for ion movement. The excitation wavelength dependency of the hysteresis presented here gives valuable insights into the photophysics of the lead halide perovskite solar cells.

J. Phys. Chem. C, 121, 2017, pp. 26180-26187
DOI: 10.1021/acs.jpcc.7b06775

How can we detect hydrogen bond local cooperativity in liquid water: A simulation study

Authors: Imre Bakó, Anikó Lábas, Kersti Hermansson, Ákos Bencsura and Julianna Oláh

The significant cooperative effect between water molecules substantially affects the properties of liquid water. The cooperativity of hydrogen bonds means that the hydrogen bond strength is influenced by the neighboring water molecules. Another descriptor related to cooperativity is degree correlation (or static correlation) describing the probability of hydrogen-bonded molecule pairs participating in additional hydrogen-bonds. Herein we analyze the latter one in liquid water at various temperatures and densities in a series of molecular dynamics simulations with the help of knowledge from network science. We investigated how the applied hydrogen bond criteria (energetic or geometric) influence the obtained results, and showed that the energetic criterion is much more rigorous and reliable, therefore should be used for similar studies. We found that the structure of the subsystems of water molecules with 3 and 4 hydrogen-bonds is distinctly different at low temperature, 3‑hydrogen-bonded water molecules form branched chain structures at all temperature. Deconvolution of the descriptors of the mixing pattern of water molecules according to their donor and acceptor numbers showed that species with complementary hydrogen bonding properties are likely to correlate and form H-bonds with each other, while species with similar H-bond pattern tend to avoid each other. Pearson’s coefficient (global descriptor of the local cooperativity) of the studied networks suggests that at normal density the H-bonded network in liquid water can be described by an uncorrelated network.

Journal of Molecular Liquids, 245, 2017, pp 140-146
DOI: 10.1016/j.molliq.2017.08.023

Multi-Scale Modelling Of Water And Hydroxide In Solids And Solutions

Author: Kersti Hermansson

This report discusses some of the most pressing challenges that need to be overcome for computational condensed matter chemistry to become fully accepted, at par with experiments. The prospects are rather bright. By means of a few examples, all connected to the bound water molecule and the hydroxide ion, and their mysteries, the unique capabilities of theoretical calculations to provide new insights and sometimes even surpass experiments in accuracy, will be demonstrated.

Contributions, Sec. Nat. Math. Biotech. Sci., MASA, 38 (1), 2017, pp 17–26
DOI: 10.20903/csnmbs.masa.2017.38.1.97

CO2 Hydration Shell Structure and Transformation

Authors: Samual R. Zukowski, Pavlin D. Mitev, Kersti Hermansson, and Dor Ben-Amotz

The hydration-shell of CO2 is characterized using Raman multivariate curve resolution (Raman-MCR) spectroscopy combined with ab initio molecular dynamics (AIMD) vibrational density of states simulations, to validate our assignment of the experimentally observed high-frequency OH band to a weak hydrogen bond between water and CO2. Our results reveal that while the hydration-shell of CO2 is highly tetrahedral, it is also occasionally disrupted by the presence of entropically stabilized defects associated with the CO2-water hydrogen bond. Moreover, we find that the hydration-shell of CO2 undergoes a temperature-dependent structural transformation to a highly disordered (less tetrahedral) structure, reminiscent of the transformation that takes place at higher temperatures around much larger oily molecules. The biological significance of the CO2 hydration shell structural transformation is suggested by the fact that it takes place near physiological temperatures.

J. Phys. Chem. Lett., 8 (13), 2017, pp 2971–2975
DOI: 10.1021/acs.jpclett.7b00971