Tag Archives: Byung-Hyum Kim

Multiscale Modeling of Agglomerated Ceria Nanoparticles: Interface Stability and Oxygen Vacancy Formation

Authors: Byung-Hyun Kim, Jolla Kullgren, Matthew J. Wolf, Kersti Hermansson and Peter Broqvist

The interface formation and its effect on redox processes in agglomerated ceria nanoparticles (NPs) have been investigated using a multiscale simulation approach with standard density functional theory (DFT), the self-consistent-charge density functional tight binding (SCC-DFTB) method, and a DFT-parameterized reactive force-field (ReaxFF). In particular, we have modeled Ce40O80 NP pairs, using SCC-DFTB and DFT, and longer chains and networks formed by Ce40O80 or Ce132O264 NPs, using ReaxFF molecular dynamics simulations. We find that the most stable {111}/{111} interface structure is coherent whereas the stable {100}/{100} structures can be either coherent or incoherent. The formation of {111}/{111} interfaces is found to have only a very small effect on the oxygen vacancy formation energy, Evac. The opposite holds true for {100}/{100} interfaces, which exhibit significantly lower Evac values than the bare surfaces, despite the fact that the interface formation eliminates reactive {100} facets. Our results pave the way for an increased understanding of ceria NP agglomeration.

Front. Chem., Vol. 7, article id 203,  22 May 2019

https://doi.org/10.3389/fchem.2019.00203

Indirect-to-Direct Band Gap Transition of Si Nanosheets: Effect of Biaxial Strain

Authors: Byung-Hyun Kim , Mina Park, Gyubong Kim, Kersti Hermansson, Peter Broqvist, Heon-Jin Choi, and Kwang-Ryeol Lee

The effect of biaxial strain on the band structure of two-dimensional silicon nanosheets (Si NSs) with (111), (110), and (001) exposed surfaces was investigated by means of density functional theory calculations. For all the considered Si NSs, an indirect-to-direct band gap transition occurs as the lateral dimensions of Si NSs increase; that is, increasing lateral biaxial strain from compressive to tensile always enhances the direct band gap characteristics. Further analysis revealed the mechanism of the transition which is caused by preferential shifts of the conduction band edge at a specific k-point because of their bond characteristics. Our results explain a photoluminescence result of the (111) Si NSs [U. Kim et al., ACS Nano 2011, 5, 2176–2181] in terms of the plausible tensile strain imposed in the unoxidized inner layer by surface oxidation.

J. Phys. Chem. C, Volume 27, 2018, Page 15297
https://doi.org/10.1021/acs.jpcc.8b02239