Tag Archives: Dou Du

From Ceria Clusters to Nanoparticles: Superoxides and Supercharging

Authors: Dou Du, J. Kullgren, K. Hermansson and P. Broqvist

Several studies have reported a dramatically increased oxygen storage capacity (OSC) for small ceria nanoparticles (∼5 nm). Both experiments and theory have correlated this effect with superoxide ion formation. In previous studies, density functional theory (DFT) calculations with the PBE+U density functional have been used, and the obtained results were only in qualitative agreement with the experimental observations. One severe problem is the underbinding of the O2 molecule upon superoxide ion formation, which suggests that such species should not exist above room temperature. In this work, we use hybrid DFT functional to resolve this problem. We find that the discrepancy between theory and experiment originates from an incorrect estimate of the energy associated with the localized f-electrons with respect to the oxygen p-levels. By using average O2 adsorption energies from hybrid DFT calculations, extrapolated to large nanoparticles (3−10 nm), in conjunction with first-order desorption kinetics, we find that superoxide ions are indeed stable on nanosized ceria well above room temperature, in accordance with experiments.

Screened hybrid functionals applied to ceria: Effect of Fock exchange

Authors: Dou Du, Matthew J. Wolf, Kersti Hermansson, and Peter Broqvist

We investigate how the redox properties of ceria are affected by the fraction of Fock exchange in screened HSE06-based hybrid density functionals, and we compare with PBE+U results, and with experiments when available. We find that using 15% Fock exchange yields a good compromise with respect to structure, electronic structure, and calculated reduction energies, and represents a significant improvement over the PBE+U results. We also investigate the possibility to use a computationally cheaper HSE06//PBE+U protocol consisting of structure optimization with PBE+U, a subsequent lattice parameter rescaling step, and, finally, a single-point full hybrid calculation. We find that such a composite computational protocol works very well and yields results in close agreement with those where HSE06 was used also for the structure optimization.

Phys. Rev. B, Volume 97, Page 235203.
https://doi.org/10.1103/PhysRevB.97.235203