Tag Archives: Peter Broqvist

Dynamical and Structural Characterization of the Adsorption of Fluorinated Alkane Chains onto CeO2

Authors: Giovanni Barcaro , Luca Sementa, Susanna Monti , Vincenzo Carravetta, Peter Broqvist, Jolla Kullgren, and Kersti Hermansson

The widespread use of ceria-based materials and the need to design suitable strategies to prepare eco-friendly CeO2 supports for effective catalytic screening induced us to extend our computational multiscale protocol to the modeling of the hybrid organic/oxide interface between prototypical fluorinated linear alkane chains (polyethylene-like oligomers) and low-index ceria surfaces. The combination of quantum chemistry calculations and classical reactive molecular dynamics simulations provides a comprehensive picture of the interface and discloses, at the atomic level, the main causes of typical adsorption modes. The data show that at room temperature a moderate percentage of fluorine atoms (around 25%) can enhance the interaction of the organic chains by anchoring strongly pivotal fluorines to the channels of the underneath ceria (100) surface, whereas an excessive content can remarkably reduce this interaction because of the repulsion between fluorine and the negatively charged oxygen of the surface.

J. Phys. Chem. C, Volume 41, 2018, Page 23405

Indirect-to-Direct Band Gap Transition of Si Nanosheets: Effect of Biaxial Strain

Authors: Byung-Hyun Kim , Mina Park, Gyubong Kim, Kersti Hermansson, Peter Broqvist, Heon-Jin Choi, and Kwang-Ryeol Lee

The effect of biaxial strain on the band structure of two-dimensional silicon nanosheets (Si NSs) with (111), (110), and (001) exposed surfaces was investigated by means of density functional theory calculations. For all the considered Si NSs, an indirect-to-direct band gap transition occurs as the lateral dimensions of Si NSs increase; that is, increasing lateral biaxial strain from compressive to tensile always enhances the direct band gap characteristics. Further analysis revealed the mechanism of the transition which is caused by preferential shifts of the conduction band edge at a specific k-point because of their bond characteristics. Our results explain a photoluminescence result of the (111) Si NSs [U. Kim et al., ACS Nano 2011, 5, 2176–2181] in terms of the plausible tensile strain imposed in the unoxidized inner layer by surface oxidation.

J. Phys. Chem. C, Volume 27, 2018, Page 15297

Screened hybrid functionals applied to ceria: Effect of Fock exchange

Authors: Dou Du, Matthew J. Wolf, Kersti Hermansson, and Peter Broqvist

We investigate how the redox properties of ceria are affected by the fraction of Fock exchange in screened HSE06-based hybrid density functionals, and we compare with PBE+U results, and with experiments when available. We find that using 15% Fock exchange yields a good compromise with respect to structure, electronic structure, and calculated reduction energies, and represents a significant improvement over the PBE+U results. We also investigate the possibility to use a computationally cheaper HSE06//PBE+U protocol consisting of structure optimization with PBE+U, a subsequent lattice parameter rescaling step, and, finally, a single-point full hybrid calculation. We find that such a composite computational protocol works very well and yields results in close agreement with those where HSE06 was used also for the structure optimization.

Phys. Rev. B, Volume 97, Page 235203.



Hydrogen-Bond Relations for Surface OH Species

Authors: Getachew G. Kebede , Pavlin D. Mitev, Peter Broqvist, Jolla Kullgren , and Kersti Hermansson

This paper concerns thin water films and their hydrogen-bond patterns on ionic surfaces. As far as we are aware, this is the first time H-bond correlations for surface water and hydroxide species are presented in the literature while hydrogen-bond relations in the solid state have been scrutinized for at least five decades. Our data set, which was derived using density functional theory, consists of 116 unique surface OH groups–intact water molecules as well as hydroxides–on MgO(001), CaO(001) and NaCl(001), covering the whole range from strong to weak to no H-bonds. The intact surface water molecules are found to always be redshifted with respect to the gas-phase water OH vibrational frequency, whereas the surface hydroxide groups are either redshifted (OsH) or blueshifted (OHf) compared to the gas-phase OH frequency. The surface H-bond relations are compared with the traditional relations for bulk crystals. We find that the “ν(OH) vs R(H···O)” correlation curve for surface water does not coincide with the solid state curve: it is redshifted by about 200 cm–1 or more. The intact water molecules and hydroxide groups on the ionic surfaces essentially follow the same H-bond correlation curve.

J. Phys. Chem. C2018122 (9), pp 4849–4858
DOI: 10.1021/acs.jpcc.7b10981

Comparing van der Waals DFT methods for water on NaCl(001) and MgO(001)

Authors: Getachew G. Kebede, Daniel Spångberg, Pavlin D. Mitev, Peter Broqvist, and   Kersti Hermansson

In this work, a range of van der Waals type density functionals are applied to the H2O/NaCl(001) and H2O/MgO(001) interface systems to explore the effect of an explicit dispersion treatment. The functionals we use are the self-consistent vdW functionals vdW-DF, vdW-DF2, optPBE-vdW, optB88-vdW, optB86b-vdW, and vdW-DF-cx, as well as the dispersion-corrected PBE-TS and PBE-D2 methods; they are all compared with the standard PBE functional. For both NaCl(001) and MgO(001), we find that the dispersion-flavoured functionals stabilize the water-surface interface by approximately 20%-40% compared to the PBE results. For NaCl(001), where the water molecules remain intact for all overlayers, the dominant contribution to the adsorption energy from “density functional theory dispersion” stems from the water-surface interactions rather than the water-water interactions. The optPBE-vdW and vdW-DF-cx functionals yield adsorption energies in good agreement with available experimental values for both NaCl and MgO. To probe the strengths of the perturbations of the adsorbed water molecules, we also calculated water dipole moments and found an increase up to 85% for water at the MgO(001) surface and 70% at the NaCl(001) surface, compared to the gas-phase dipole moment.

The Journal of Chemical Physics 146, 064703 (2017);
doi: http://dx.doi.org/10.1063/1.4971790

Self-Consistent-Charge Density-Functional Tight-Binding (SCC-DFTB) Parameters for Ceria in 0D to 3D

Authors: Jolla Per Kullgren, Matthew Jason Wolf, Kersti Hermansson, Christof Köhler, Bálint Aradi, Thomas Frauenheim, and Peter Broqvist

Reducible oxides such as CeO2 are challanging to describe
with standard density functional theory (DFT) due to the mixed valence states of the cations, and often require the use of additional correction schemes, an
d/or more computationally expen- sive methods. This adds a new layer of complexity when it comes to the generation of Slater-Koster tables and the corresponding repulsive potentials for self-consistent density functional based tight binding (SCC-DFTB) calculations of such materials. In this work, we provide guidelines for how to set up a parameterisation scheme for mixed valence oxides within the SCC-DFTB framework, with a focus on reproducing structural and electronic properties as well as redox reaction energies calculated using a reference DFT method. This parameterisation procedure has been used to generate parameters for Ce–O interactions, with Ce in its +III or +IV formal oxidation states. The generated parameter set is validated through comparison to DFT calculations for various ceria (CeO2) and reduced ceria (CeO2−x ) systems of different dimensionalities ranging from 0D (nano-particles) to 3D (bulk). As oxygen vacancy defects in ceria are of crucial importance to many technological applications, special focus is directed towards the capability of describing such defects accurately.

J. Phys. Chem. C2017, 121 (8), pp 4593–4607
DOI: 10.1021/acs.jpcc.6b10557

Fluorine impurities at CeO2(111): Effects on oxygen vacancy formation, molecular adsorption, and surface re-oxidation

Authors: Matthew J. Wolf, Jolla Kullgren, Peter Broqvist, and Kersti Hermansson

We investigate the effects of anion doping with fluorine impurities on the chemistry of the CeO2 (111) facet, using the results of DFT + U calculations. We consider three prototypical processes: the formation of oxygen vacancies, the adsorption of O2 and H2O molecules, and the re-oxidation of the surface with fragments of the two molecules. We find that the first two of these processes are not strongly affected, but that the presence of F lowers the energy gained in the re-oxidation of the surface in comparison to the healing of an oxygen vacancy, by 1.47 eV in the case of O2 (provided that the F is part of a cluster) and by 0.92 eV in the case of H2O. Based on these results, we suggest that F could enhance the redox chemistry of ceria by toggling between being in the surfaceand on the surface, effectively facilitating the release of lattice O by acting as a “place holder” for it. Finally, we find that the desorption of F as either 1212F2 or HF is energetically unfavourable, suggesting that F doped ceria should be stable in the presence of O2 and H2O.
J. Chem. Phys. 2017, 146, 044703
DOI: 10.1063/1.4973239 

Bismuth Iodide Perovskite Materials for Solar Cell Applications: Electronic Structure, Optical Transitions and Directional Charge Transport

Authors: Meysam Pazoki, Malin B. Johansson, Huimin Zhu, Peter Broqvist, Tomas Edvinsson, Gerrit Boschloo, and Erik M. J. Johansson

Cesium and bismuth iodides (Cs3Bi2I9 and MA3Bi2I9) are new low-toxic and air stable compounds in the perovskite solar cell family with promising characteristics. Here, the electronic structure and the nature of their optical transitions, dielectric constant, and charge carrier properties are assessed for photovoltaic applications with density functional theory (DFT) calculations and experiments. The calculated direct and indirect band gap values for Cs3Bi2I9(2.17 and 2.0 eV) and MA3Bi2I9 (2.17 and 1.97 eV) are found to be in good agreement with the experimental optical band gaps (2.2, 2.0 eV and 2.4, 2.1 eV for Cs3Bi2I9 and MA3Bi2I9, respectively) estimated for solution-processed films. There is an error cancelation in the DFT calculated band gap similar to that for lead perovskites. However, fully relativistic DFT calculations indicate that the size of the spin orbit coupling (SOC) error cancelation for bismuth perovskite (0.5 eV) is less than for lead perovskite (1 eV), and other factors are therefore also important. Band structure calculations show high effective masses of the charge carriers along the c-axis but on the other hand lower electron effective mass in the ab planes, revealing the interesting possibility for a directional charge transport. Calculations of dielectric constants, absorption coefficients, carrier effective masses, and exciton binding energies emphasize the fundamental differences between the lead and bismuth iodide perovskites and clarify the reasons behind the lower power conversion efficiency of bismuth iodide perovskite solar cells. Also the calculations show that the orientational disorder of the MA dipoles in the lattice has meaningful impacts on the near valence and conduction band edge of the electronic structure.

J. Phys. Chem. C, 2016, 120 (51), pp 29039–29046
DOI: 10.1021/acs.jpcc.6b11745

Detecting Important Intermediates in Pd Catalyzed Depolymerization of a Lignin Model Compound by a Combination of DFT Calculations and Constrained Minima Hopping

Authors: Pemikar Srifa, Maxim V. Galkin, Joseph S. M. Samec, Kersti Hermansson, and Peter Broqvist

Density functional theory (DFT) calculations, combined with a constrained minima hopping algorithm (global minimum search while preserving the molecular identity), have been performed to investigate important reaction intermediates for the heterogeneously catalyzed β-O-4′ bond cleavage in lignin derivatives. More specifically, we have studied the adsorption properties of a keto tautomer (1-methoxypropan-2-one) and its enol form on a catalytically active Pd(111) surface. In agreement with experiments, we find that for the gas-phase molecules the keto tautomer is the most stable. Interestingly, the enol tautomer has a higher affinity to the Pd catalyst than the keto form, and becomes the most stable molecular form when adsorbed on the catalyst surface. The global minimum complex found on the metal surface corresponds to an enolate structure formed when the enol tautomer chemisorbs onto the surface and donates its π-electrons from the C═C region to two adjacent palladium atoms. The actual formation of a chemical bond to the surface in the case of the enol molecule could be the key to understanding why the enol derivative is needed for an efficient β-O-4′ bond cleavage.

J. Phys. Chem. C, 2016, 120 (41), pp 23469–23479
DOI: 10.1021/acs.jpcc.6b05622

Enhanced wetting of Cu on ZnO by migration of subsurface oxygen vacancies

Authors: Igor Beinik, Matti Hellström, Tomas N. Jensen, Peter Broqvist, and Jeppe V. Lauritsen

ncommMetal adhesion on metal oxides is strongly controlled by the oxide surface structure and composition, but lack of control over the surface conditions often limits the possibilities to exploit this in opto- and micro-electronics applications and heterogeneous catalysis where nanostructural control is of utmost importance. The Cu/ZnO system is among the most investigated of such systems in model studies, but the presence of subsurface ZnO defects and their important role for adhesion on ZnO have been unappreciated so far. Here we reveal that the surface-directed migration of subsurface defects affects the Cu adhesion on polar ZnO(0001) in the technologically interesting temperature range up to 550K. This leads to enhanced adhesion and ultimately complete wetting of ZnO(0001) by a Cu overlayer. On the basis of our experimental and computational results we demonstrate a mechanism which implies that defect concentrations in the bulk are an important, and possibly controllable, parameter for the metal-on-oxide growth.

Nature Communications 6, Article number: 8845

DOI: 10.1038/ncomms9845