Tag Archives: Philippe A. Bopp

Formic Acid on TiO2–x (110): Dissociation, Motion, and Vacancy Healing

Authors: Shuanglin Hu, Phillipe A. Bopp, Lars Österlund, Peter Broqvist, and Kersti Hermansson

shThe adsorption and dissociation of a formic acid molecule (HCOO) on a partially reduced rutile TiO2–x (110) surface and the subsequent transformations of the adsorbed fragments are studied via quantumechanical molecular dnamics simulations and climbing-image nudged elastic band (CI-NEB) calculations. The electronic structure methods used are self-consistent-charge density functional tight binding (SCC-DFTB) and DFT+U calculations. We address the apparent lack of consensus in the literature regarding the formic acid adsorbate species that heal the O vacancies, where different experiments have suggested the occurrence of one, two, or no such species types. From our calculations, we propose that the formic acid molecule quickly dissociates on the surface into a formate ion and a proton. If no mechanism exists by which the dissociation products can migrate away from each other, three formate species will coexist on the partially reduced TiO2 surface: one majority species bound to the Ti rows and two minority species healing the O vacancies. However, if such a diffusion mechanism does exist, our barrier calculations show that one of the minority species will transform into the other, and only two adsorbate types can be expected on the surface. We also identify a new adsorbate configuration (which we denote C′), where the formate is located on the row of two-coordinated oxygen atoms, healing an O vacancy and accepting an H-bond from the detached H atom.

J. Phys. Chem. C 118, 14876 (2014). 

DOI: 10.1021/jp500771d

Different structures give similar vibrational spectra: The case of OH− in aqueous solution

Authors: Pavlin D. Mitev, Philippe A. Bopp, Jasmina Petreska, Kaline Coutinho, Hans Ågren, Ljupco Pejov, and Kersti Hermansson

We have calculated the anp5aharmonic OH(aq) vibrational spectrum in aqueous solution with a “classical Monte Carlo simulation + QM/MM + vibrational” sequential approach. A new interaction model was used in the Monte Carlo simulations: a modified version of the charged-ring hydroxide-water model from the literature. This spectrum is compared with experiment and with a spectrum based on CPMD-generated structures, and the hydration structures and H-bonding for the two models are compared. We find that: (i) the solvent-induced frequency shift as well as the absolute OH frequency are in good agreement with experiment using the two models; (ii) the Raman and IR bands are very similar, in agreement with experiment; (iii) the hydration structure and H-bonding around the ion are very different with the two ion-water interaction models (charged-ring and CPMD); (iv) a cancellation effect between different regions of the hydration shell makes the total spectra similar for the two interaction models, although their hydration structures are different; (v) the net OH frequency shift is a blueshift of about +80 cm−1 with respect to frequency of the gas-phase ion.

J. Chem. Phys. 138, 064503 (2013);

The vibrating hydroxide ion in water

Kersti Hermansson, Philippe A. Bopp, Daniel Spångberg, Ljupco Pejov, Imre Bakó, Pavlin D. Mitev

scienceThe OH ion in water is studied using a CPMD/BLYP + QMelectronic + QMvibrational approach. The ion resides in a cage of water molecules, which are H-bonded among each other, and pinned by H-bonding to the ion’s O atom. The water network keeps the ‘on-top’ water in place, despite the fact that this particular ion-water pair interaction is non-binding. The calculated OH vibrational peak maximum is at ∼3645 cm−1 (experiment ∼3625 cm−1) and the shift with respect to the gas-phase is ∼ +90 cm−1 (experiment +70 cm−1). The waters molecules on each side of the ion (O and H) induce a substantial OH vibrational blueshift, but the net effect is much smaller than the sum. A parabolic ‘frequency-field’ relation qualitatively explains this non-additivity. The calculated ‘in-liquid’ ν(OH) anharmonicity is 85 cm−1.

Chemical Physics Letters, Vol. 514, 2011, Pages 1–15