Tag Archives: Wim J. Briels

DFT-based Monte Carlo Simulations of Impurity Clustering at CeO2(111)

Authors: Jolla Kullgren, Matthew J. Wolf, Pavlin D. Mitev, Kersti Hermansson and Wim J. Briels

The interplay between energetics and entropy in determining defect distributions at ceria(111) is studied using a combination of DFT+U and lattice Monte Carlo simulations. Our main example is fluorine impurities, although we also present preliminary results for surface hydroxyl groups. A simple classical force-field model was constructed from a training set of DFT+U data for all symmetrically inequivalent (F)n(Ce3+)n nearest-neighbor clusters with n = 2 or 3. Our fitted model reproduces the DFT energies well. We find that for an impurity concentration of 15% at 600 K, straight and hooked linear fluorine clusters are surprisingly abundant, with similarities to experimental STM images from the literature. We also find that with increasing temperature the fluorine cluster sizes show a transition from being governed by an attractive potential to being governed by a repulsive potential as a consequence of the increasing importance of the entropy of the Ce3+ ions. The distributions of surface hydroxyl groups are noticeably different.

J. Phys. Chem. C, 2017, 121 (28), pp 15127–15134
DOI: 10.1021/acs.jpcc.7b00299

Oxygen Vacancies versus Fluorine at CeO2(111): A Case of Mistaken Identity?

Authors: J. Kullgren, M. J. Wolf, C. W. M. Castleton, P. D. Mitev, W. J. Briels, and K. Hermansson

mediumWe propose a resolution to the puzzle presented by the surface defects observed with STM at the (111) surface facet of CeO2 single crystals. In the seminal paper of Esch et al. [Science 309, 752 (2005)] they were identified with oxygen vacancies, but the observed behavior of these defects is inconsistent with the results of density functional theory (DFT) studies of oxygen vacancies in the literature. We resolve these inconsistencies via DFT calculations of the properties of both oxygen vacancies and fluorine impurities at CeO2(111), the latter having recently been shown to exist in high concentrations in single crystals from a widely used commercial source of such samples. We find that the simulated filled-state STM images of surface-layer oxygen vacancies and fluorine impurities are essentially identical, which would render problematic their experimental distinction by such images alone. However, we find that our theoretical results for the most stable location, mobility, and tendency to cluster, of fluorine impurities are consistent with experimental observations, in contrast to those for oxygen vacancies. Based on these results, we propose that the surface defects observed in STM experiments on CeO2 single crystals reported heretofore were not oxygen vacancies, but fluorine impurities. Since the similarity of the simulated STM images of the two defects is due primarily to the relative energies of the 2p states of oxygen and fluorine ions, this confusion might also occur for other oxides which have been either doped or contaminated with fluorine.

Phys. Rev. Lett. 112, 156102
DOI: http://dx.doi.org/10.1103/PhysRevLett.112.156102