Vacancy dipole interactions and the correlation with monovalent cation dependent ion movement in lead halide perovskite solar cell materials

Authors: M.Pazoki, M. J. Wolf, T. Edvinsson and J.Kullgren

Ion migration has recently been suggested to play critical roles in the operation of lead halide perovskite solar cells. However, so far there has been no systematic investigation of how the monovalent cation affects the vacancy formation, ion migration and the associated hysteresis effect. Here, we present density functional theory calculations on all possible ion migration barriers in the perovskite materials with different cations i.e. CH3NH3PbI3, CH(NH2)2PbI3 and CsPbI3 in the tetragonal phase and investigate vacancy monovalent-cation interactions within the framework of the possible ion migrations. The most relevant ion movement (iodide) is investigated in greater detail and corresponding local structural changes, the relationships with the local ionic dielectric response, Stark effect and current-voltage hysteresis are discussed. We observe a correlation between the energy barrier for iodine migration and the magnitude of the dipole of the monovalent cation. From the data, we suggest a vacancy-dipole interaction mechanism by which the larger dipole of the monovalent cation can respond to and screen the local electric fields more effectively. The stronger response of the high dipolar monovalent cation to the vacancy electrostatic potential in turn leads to a lower local structural changes within the neighbouring octahedra. The presented data reveal a detailed picture of the ion movement, vacancy dipole interactions and the consequent local structural changes, which contain fundamental information about the photo-physics, and dielectric response of the material.

Nano Energy, 38, 2017, pp. 537-543
DOI: 10.1016/j.nanoen.2017.06.024

Comments are closed.